

Micronutrientes e redução do risco de doenças

Silvia M.F.Cozzolino FCF-USP

smfcozzo@usp.br

Sumário

- Introdução
- Deficiências e Excessos Dieta Brasileira
- Alimentação Adequada
- Considerações sobre Dietas e Guias Alimentares
- Doenças Crônicas Não Transmissíveis
- Trabalhos Científicos com padrões Alimentares

Dietas brasileiras e riscos nutricionais

Padrão alimentar atual Riscos nutricionais

- > Alimentos calóricos
- > lipideos e AGS
- < micronutrientes:
- Vitamina D
- Vitamina A
- Riboflavina
- Ômega 3
- Cálcio
- Magnésio
- Zinco
- Selênio, etc

Alto consumo de sódio

Alimentação Adequada?

Guias para Alimentação

Dieta Mediterrânea

Guias para Estados Unidos (FDA)

Guias Alimentares para população brasileira

Dentre outras......

Guía alimentaria para la población

Catarina Picó

The Guidelines

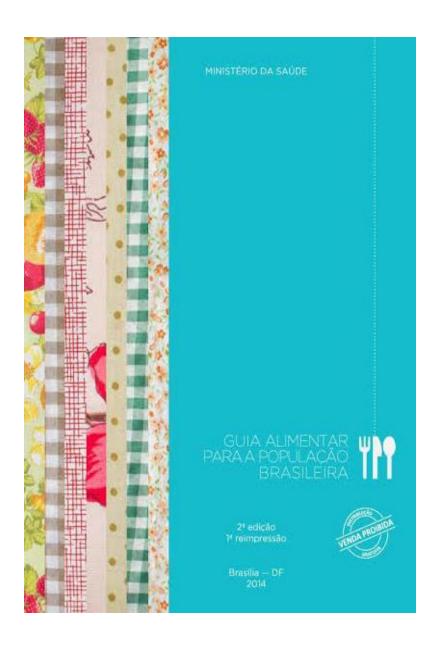
1 Follow a healthy eating pattern across the lifespan. All food and beverage choices matter. Choose a healthy eating pattern at an appropriate calorie level to help achieve and maintain a healthy body weight, support nutrient adequacy, and reduce the risk of chronic disease.

Escolhas saudáveis respeitando as necessidades calóricas

Variedade, densidade e quantidade

Pocus on variety, nutrient density, and amount. To meet nutrient needs within calorie limits, choose a variety of nutrient-dense foods across and within all food groups in recommended amounts.

Limit calories from added sugars and saturated fats and reduce sodium intake. Consume an eating pattern low in added sugars, saturated fats, and sodium. Cut back on foods and beverages higher in these components to amounts that fit within healthy eating patterns.


Limitar calorias de açúcar, SFA e sódio

Mude para alimentos e bebidas saudáveis

Shift to healthier food and beverage choices. Choose nutrient-dense foods and beverages across and within all food groups in place of less healthy choices. Consider cultural and personal preferences to make these shifts easier to accomplish and maintain.

Support healthy eating patterns for all. Everyone has a role in helping to create and support healthy eating patterns in multiple settings nationwide, from home to school to work to communities.

Todos podem contribuir para adesão de hábitos alimentares saudáveis

Guia Alimentar para a População Brasileira

Salada de tomate, arroz, feijão, bife grelhado e salada de frutas

Fatores de risco para deficiência de Micronutrientes (1)

- Dietas monótonas com baixa densidade de micronutrientes
- Baixa ingestão de alimentos de origem animal
- Baixa prevalência de aleitamento materno
- Baixa densidade de micronutrientes nos alimentos complementares para crianças > 6 meses
- Aumento da demanda fisiológica na gestação e lactação

Fatores de risco para deficiência de Micronutrientes (2)

- Estado nutricional deficiente
- Má absorção devido a diarreias e parasitas intestinais
- Aumento da excreção
- Variações sazonais na disponibilidade de nutrientes
- Fatores sociais, pobreza, baixo nível educacional

Alimentação vs. Estado Nutricional

O estado nutricional de um indivíduo está relacionado com a ingestão dos nutrientes, com a biodisponibilidade dos mesmos na dieta, e da interação destes com o seu genoma

Quando a alimentação não é adequada, o organismo tenta a compensação, e, se esse estado persiste, ocorre a doença com todas suas consequências

Nutrientes nos alimentos

- > Variam com idade da planta, maturação, espécie, variedade, cultivar, dieta
 - Meio ambiente (clima, solo, chuvas, estação do ano)
 - Processamento (tempo de armazenamento, temperatura, método de

preservação, preparação)

Funções dos Alimentos

✓ Primária:

Capacidade de nutrir

✓ Terciária:

Capacidade de alguns alimentos de melhorar a condição física e/ou reduzir o risco de doenças

✓ Secundária:

Palatabilidade

Alimentação Saudável?

 Aquela que favorece o crescimento e desenvolvimento adequados, mantêm o organismo saudável e pode diminuir o risco de doenças crônicas não transmissíveis (DCNT)

DOENÇAS CRÔNICAS NÃO TRANSMISSÍVEIS

PRINCIPAIS CARACTERÍSTICAS (OPAS, 2005)

- ☐ etiologia incerta
- ☐ múltiplos fatores de risco
- □ longos períodos de latência
- ☐ curso prolongado
- ☐ origem não infecciosa
- ☐ associadas a deficiências e incapacidades funcionais

DOENÇAS CRÔNICAS NÃO TRANSMISSÍVEIS

- Obesidade
 - Diabetes
 - Câncer
- Doenças cérebro vasculares
 - Hipertensão arterial

Obesidade e Doenças Cardiovasculares

✓ Principal causa de mortalidade no mundo

✓ Estima-se que em 2030 a DCV seja responsável por cerca de 23,4 milhões de óbitos/ano

Infarto do Miocardio
Acidente Vascular Cerebral

✓ No Brasil a DCV é responsável por cerca de 30% dos óbitos

OBESIDADE

Considerada Doença

Causas – multifatoriais:

- Fatores genéticos
- Ambientais
- Sócio econômicos
- Psicológicos
- Microbiota (?) (microorganismos da flora intestinal)

Novas Perspectivas para estudo Micronutrientes e Substâncias Bioativas

- > Capacidade Antioxidante
- Modulação da Atividade Enzimática
 - Estimulo à resposta imune
- Modulação do Metabolismo Hormonal
 - Redução da Agregação Plaquetária
 - Diminuição da Pressão Sanguínea
 - Regulação da Expressão Gênica
 - Dentre outros......

Castanha-do-brasil (Bertholletia excelsa)

Concentrations of Se $(\mu g/g)$ in nuts from Amazon

	Concentrations of Se in brazilian nuts (µg/g)
GONZAGA (2002)	40
MARTENS and COZZOLINO	43
(2002)	25
ROCHA (2009)	58
STOCLER PINTO (2009)	58
COMINETTI (2010)	115
PIRES (2012)	71
CALLOU and CARDOSO (2012)	85
PIMENTEL,A (2011)	

TABELA COMPRATIVA DAS CONCENTRAÇÕES DE SELÊNIO EM CASTANHAS DE DIFERENTES LOCALIDADES DO BRASIL

(METODOLOGIA UTILIZADA PARA DOSAGEM DE SELÊNIO: ESPECTROMETRIA DE EMISSÃO ÓPTICA COM PLASMA - ICP OES) (DIGESTÃO DE AMOSTRAS POR MICROONDAS)

LOCAL DA COMPRA	PRODUTOR/ DISTRIBUIDOR	LOCAL DO PLANTIO	FORMA	Selênio (μg/g)	DP	Selênio (5 g = 1 noz)
Casa de Frios Missão (Itu – SP)				21,47	0,332	107,33
Supermercado Yaya (São Paulo – SP)		Fortaleza (CE)		13,85	6,121	69,23
Pão de Açúcar (São Paulo – SP)	Produtor: Pribel Comércio Importação e Exportação Ltda. Obadia – PA Distribuidor: Grupo Pão de Açúcar. São Paulo – SP	Óbidos (PA)		23,29	3,565	116,44
Pão de Açúcar (São Paulo – SP)	Produtor: RAP Indústria e Comércio de Alimentos Ltda. São Paulo – SP. Distribuidor: Frutnut. São Paulo – SP.	Óbidos (PA)		15,01	0,123	75,03
São Paulo – SP	Distribuidor: Byblos Indústria, Comércio, Importação e Exportação Ltda. São Paulo – SP.			48,38	5,881	241,92
São Paulo – SP (Casa Santa Luzia)	Distribuidor: Jorge Mutran (Belém/Pará)	Belém (PA)	υescascaαa	6,36	1,254	31,82

CONCENTRATION OF SELENIUM, LIPIDS AND PHENOLIC COMPOUNDS IN BRAZILIAN NUTS (*Bertholletia excelsa* H.B.K.)

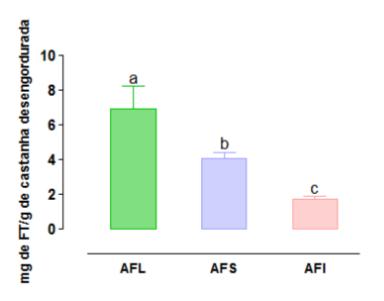
Liliane Viana Pires, Ana Mara de Oliveira e Silva, Luciane Luca de Alencar, Leila Leiko Hashimoto, José Alexandre Coelho Pimentel, Rosângela Pavan, Jorge Mancini-Filho, Silvia Maria Franciscato Cozzolino.

Departament Food and Experimental Nutrition – FCF/USP, SãoPaulo, Brazil.

Composição Centesimal da Castanha do Brasil

Nutrientes	Safra 1	Safra 2	Safra 3
Umidade %	0,44	0,72	1,8
Proteína %	16,0	16,1	15,4
Lipidios %	69,8	71,3	70,7
Carboidratos %	10,8	8,3	9,2
Cinzas %	3,3	3,1	3,2
Fibra %	-	_	-
Selênio μg/g	111,0	74,3	58,1
Energia- kcal	735,4	743,6	733,5

Composição Química- Fração Lipídica


Frações	g/100g de castanha
Lípides Totais	69,8 ± 0,93
SFA	16,4 ± 0,24
MUFA	22,6 ± 0,32
PUFAS	27,7 ± 0,36

FRAÇÕES	mg/g de castanha desengordurada
FPA (Free Phenolic Acids)	6,95
SPA (Soluble Phenolic Acids)	4,11
IPA (Insoluble Phenolic Acids)	1,76

Compostos bioativos da castanha-do-brasil

Figura 12. Quantidade de fenólicos totais das frações de ácidos fenólicos obtidas da castanha-do-brasil expressa por mg de equivalente de ácido gálico/g de amostra desengordurada. As letras diferem entre si, p<0,05. Legenda: FT: fenólicos totais; AFL: ácidos fenólicos livres; AFS: ácidos fenólicos solúveis; AFI: ácidos fenólicos insolúveis. Os dados representam média e desvio-padrão.

Total de compostos fenólicos: 398 mg/100g de castanha-do-brasil

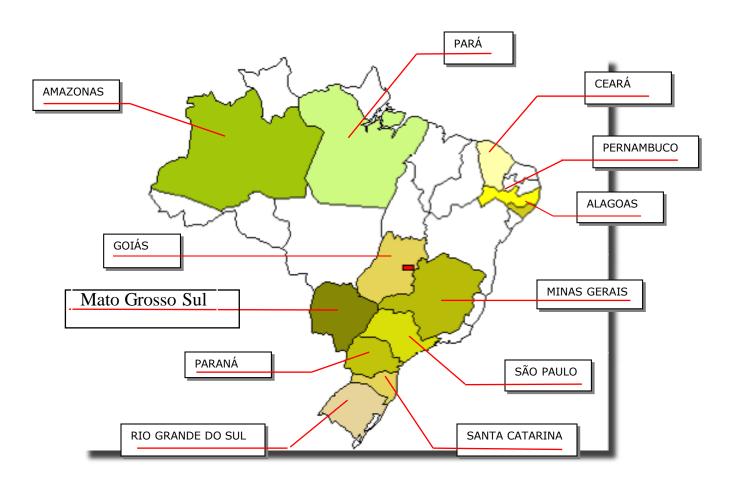
Cada noz 5g = 19,9 mg de compostos fenólicos totais

Selênio

Selênio

Distribuição Geográfica

Distribuição Heterogênea – concentrações de $0.1 \mu g/g^{-1}$ a $1 \mu g/g^{-1}$


Fatores geoquímicos: pH, natureza da rocha originária dos solos, processos de aeração e irrigação do solo

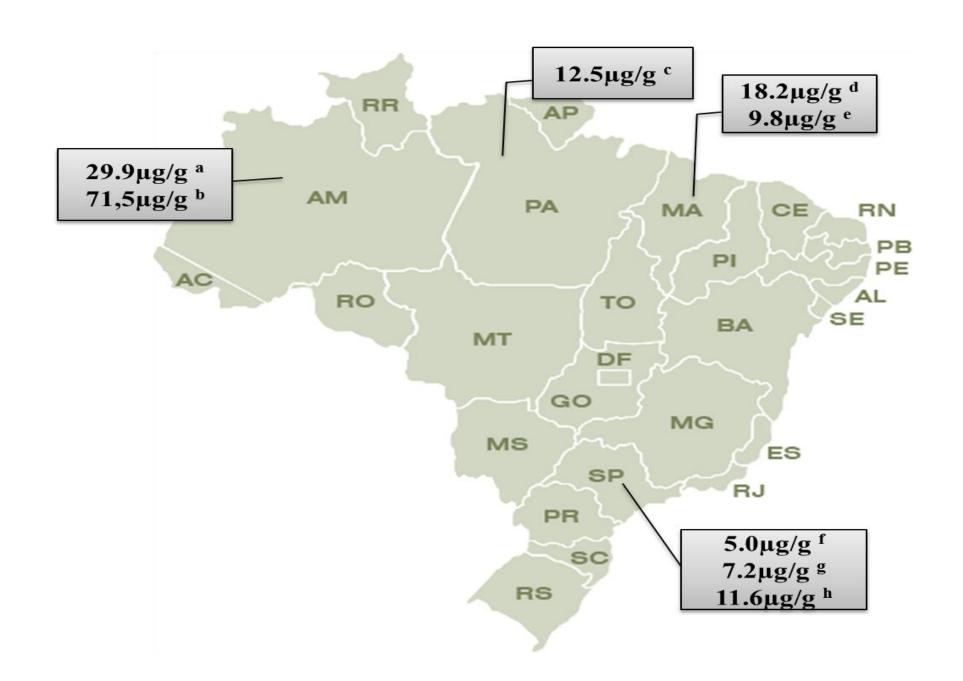
Compostos de Se nos solos

Orgânica – Selenometionina e Selenocisteína Inorgânica – Selenato e Selenito

Áreas pesquisadas: Se

FIGURA. Localização dos estados no mapa do Brasil.

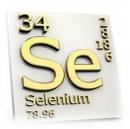
Selênio


Distribuição Geográfica

Selenium in *Phaseolus vulgaris* - Brazil MARTENS, A; GONZAGA, I.; COZZOLINO, S.M.F., 2002

• Ceará	1.179 μg/g
• Pará	0.139 μg/g
 Amazonas 1 	0.099 μg/g
 Pernambuco 	0.094 μg/g
 Alagoas 	0.061 μg/g
 Amazonas 2 	0.043 μg/g
 Minas Gerais1 	0.042 μg/g

Minas Gerais 2	0.041 μg/g
Pernambuco 2	0.027 μg/g
• São Paulo 1	0.027 μg/g
Mato Grosso Sul	0.020 μg/g
• Goiás	0.018 μg/g
• São Paulo 2	0.018 μg/g
• São Paulo 3	0.016 μg/g



Importância do Selênio na Alimentação Humana

Selênio

- O selênio foi considerado mineral tóxico e cancerígeno
- Em 1960 foi reconhecido como elemento essencial para o organismo

Aspectos funcionais do Se

Mineral traço essencial para a saúde humana.

Apresenta atividade como parte de proteínas denominadas *SELENOPROTEÍNAS*.

Participação no sistema de defesa antioxidante

Diminuição do risco de doenças cardiovasculares

Redução no risco de desenvolvimento de câncer

Potencialização do sistema imunológico

Metabolismo dos hormônios da glândula tireoide

Destoxificação contra metais pesados e xenobióticos

Selênio

Aspectos funcionais do Se

Recomendações de Ingestão de Se

Idade	EAR (μg)	RDA(μg)	UL (μg)
0-6 meses	15 (AI)		45
7-12 meses	20 (AI)		60
1-3 anos	17	20	90
4-8 anos	23	30	150
9-13 anos	35	40	280
14-18 anos	45	55	400
19-50 anos	45	55	400
51-70 ou >	45	55	400

Selênio - Deficiência

Principais causas

Consumo insuficiente

Má absorção

Nutrição enteral / parenteral

Condições de estresse oxidativo crônico

Selênio - Deficiência

Doença de Keshan: cardiomiopatia endêmica Sinais:

- Degeneração dos músculos;
- Fibrose no miocárdio;
- Cardiomegalia;
- Isquemia do miocárdio;
- Eletrocardiograma anormal;
- Edema pulmonar;
- 5% dos doentes tem hipertrofia do fígado.

Ocorre com ingestão < 11 ug/ dia

(FOX e FAIRWEATHER-T, 1999; ESTADOS UNIDOS, 2000).

Selênio - Excesso

Toxicidade - 850 ug/ dia (ESTADOS UNIDOS – NCR, 2001).

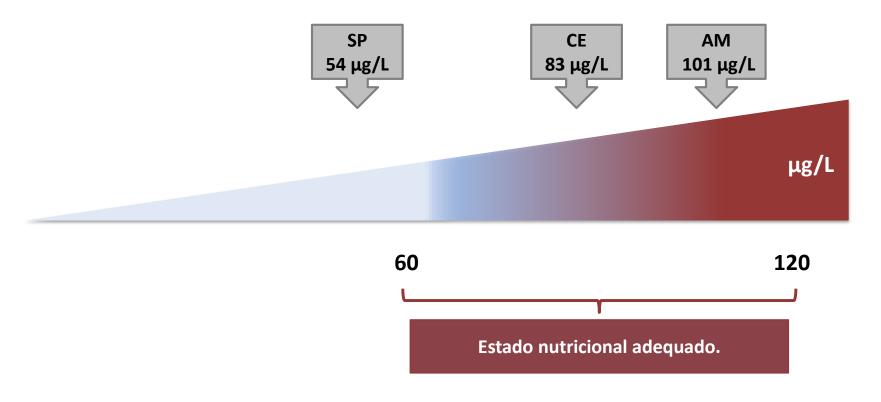
Dentre os sinais de toxicidade de selênio:

- náuseas,
- odor de alho na respiração
- perda de cabelo
- unhas quebradiças com pontos brancos
- lesões na pele
- fadiga
- irritabilidade, entre outros`. (SILVA, 2002; WHO, 1993)

Biomarcadores Se

- Conc. Plasma ou sangue total
- GPx plasma
- GPx eritrócito
- Atividade selenoperoxidases em celulas sangue (plaquetas, linfócitos, neutrófilos)
- Selenoproteína P
- Concentração hormonios tireóide

Resultados de Estudos


Lab. Nutrição e Minerais – FCF – USP

AVALIAÇÃO SANGUÍNEA

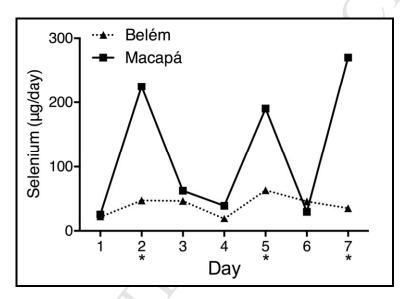
Selênio plasmático (adultos) Laboratório de Nutrição-Minerais

VAN DAEL; DEELSTRA.Int J Vitam Nutr Res, v.63(4): 312-316, 1993.

ACCEPTED MANUSCRIPT

NUTRITIONAL STATUS OF SELENIUM IN PRESCHOOL CHILDREN RECEIVING A BRAZIL NUT-ENRICHED DIET

Irland B. G. Martens¹, Barbara R. Cardoso^{2,3,*}, Dominic J. Hare^{3,4,5}, Megan M.


Niedzwiecki⁵, Franco M. Lajolo², Andreas Martens⁶, Silvia M. F. Cozzolino²

ACCEPTED MANUSCRIPT

Table 3. Macronutrients and selenium content in diets of preschool children from Macapá and Belém.

	Macapá	Belém
Energy (kcal/day)	1124.8 (994.52 – 1.265.56)	1081.5 (925.12 – 1309.52)
Protein (g/day)	31.5 (24.55 – 48.41)	42.5 (35.15 – 49.5)
Carbohydrates (%)	55.9 (50.3 – 61.2)	49.2 (41.3 – 59.2)
Lipids (%)	32.8 (27.1 – 40.0)	36.9 (24.1 – 49)
Selenium (µg/day)	155.30 (98.70 – 195.3)	44.40 (33.90 – 53.20)

All data are given as median (min – max)

Figure 1. Selenium concentration (μ g/day) in diets of preschool children.

^{*}Brazil-nut enriched meals

Table 4. Selenium parameters of children from Macapá and Belém.

Parameters	Macapá (n = 41)	Belém (n = 41)
Plasma (µg/L)	$107.29 \pm 27.15 (73.00 - 172.00)$	$83.56 \pm 23.32* (47.00 - 142.00)$
Erythrocyte (μ g/L)	$133.24 \pm 32.24 (78.00 - 195.00)$	$94.74 \pm 18.60 * (67.00 - 150.00)$
Urine (μ g/mL)	$0.27 \pm 0.12 (0.11 - 0.47)$	$0.04 \pm 0.01*(0.02 - 0.10)$
Hair $(\mu g/g)$	$0.89 \pm 0.24 (0.44 - 1.35)$	$0.31 \pm 0.10 * (0.12 - 0.50)$
Nails $(\mu g/g)$	$3.43 \pm 1.81 (0.89 - 8.43)$	$1.29 \pm 0.52 * (0.31 - 2.16)$

All data are given as mean \pm SD (min – max)

^{*} Significantly different from Macapá. p < 0.001 (Student's t-test)

SciVerse ScienceDirect

Brazilian nut consumption improves selenium status and glutathione peroxidase activity and reduces atherogenic risk in obese women

Cristiane Cominetti^a, Maritsa C. de Bortoli^b, Arthur B. Garrido Jr. ^c, Silvia M.F. Cozzolino^{b,*}

1 castanha/dia (≈290 mcgSe) 8 semanas Table – Characteristics, blood Se concentrations, erythrocyte GPx activity, and lipid profile of participants at baseline and 8 weeks later after consumption of Brazilian nuts

Parameters	Baseline	8 weeks after baseline
Age (y) Weight (kg)	34.5 ± 6.8 121.7 ± 13.8	34.5 ± 6.8 123.1 ± 15.1
BMI (kg/m ²)	45.2 ± 4.2	45.7 ± 4.3
Plasma Se (μg/L)	55.7 ± 13.3	132.5 ± 34.9 a
Erythrocyte Se (μg/L)	60.5 ± 22.6	205.9 ± 42.0°
GPx activity (μg/g Hb level)	36.6 ± 17.1	53.6 ± 20.4 b
TC (mg/dL)	171.0 ± 27.8	175.5 ± 26.6
HDL-c (mg/dL)	37.6 ± 13.6	44.5 ± 13.4 °
LDL-c (mg/dL)	114.0 ± 29.6	110.0 ± 22.8
VLDL-c (mg/dL)	19.6 ± 9.4	21.7 ± 8.3
TAG (mg/dL)	110.3 ± 87.9	108.6 ± 41.5
Castelli I index	5.0 ± 1.8	4.2 ± 1.1 ^d
Castelli II index	3.4 ± 1.7	2.7 ± 1.0 ^e
Fasting glucose (mg/dL)	110.4 ± 18.8	108.2 ± 20.8

All data are given as means \pm SD (N = 37).

- ^a Significantly different from baseline, P < .0001 (Wilcoxon test).
- ^b Significantly different from baseline, P < .0001 (Student t test).
- ^c Significantly different from baseline, P < .00001 (Student t test).
- ^d Significantly different from baseline, P = .0002 (Wilcoxon test).
- ^e Significantly different from baseline; P = .0004 (Wilcoxon test).

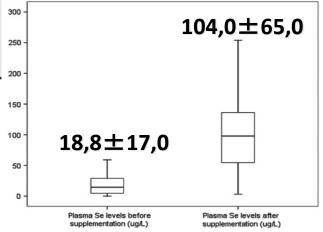
Table 3Assessment parameters before and after supplementation

Parameters	Before supplementation	After supplementation
Plasma selenium (μg/L)	18.8 ± 17.0 (0-82)	104.0 ± 65.0 (3.2-328.5)*
Erythrocyte $(\mu g/L)$	72.4 ± 37.9 (0-189.9)	244.1 ± 119.5 (11.9–570.9)*
Glutathione peroxidase (U/g hemoglobin)	46.6 ± 14.9 (18.6–89.4)	55.9 ± 23.6 (5.4–131.5)*

^{*} P < 0.05.

Contents lists available at ScienceDirect

Nutrition



Applied nutritional investigation

Effect of Brazil nut supplementation on the blood levels of selenium and glutathione peroxidase in hemodialysis patients

M.B. Stockler-Pinto M.S. ^{a,*}, D. Mafra Ph.D. ^b, N.E. Farage R.D. ^c, G.T. Boaventura Ph.D. ^b, S.M.F. Cozzolino Ph.D. ^a

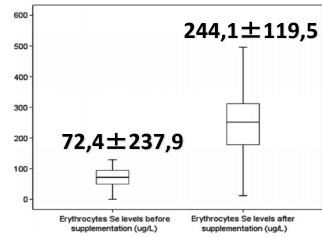


Fig. 2. Comparison of levels of erythrocyte Se before and after supplementation. Se, selenium.

Selênio

J Ren Nutr. 2012 Jul;22(4):434-9. Epub 2012 Jan 3.

Effect of Brazil nut supplementation on plasma levels of selenium in hemodialysis patients: 12 months of follow-up.

Stockler-Pinto MB, Lobo J, Moraes C, Leal VO, Farage NE, Rocha AV, Boaventura GT, Cozzolino SM, Malm O, Mafra D.

Health Science Centre, Institute of Biophysic Carlos Chagas Filho, Federal University of Rio de Janeiro-UFRJ, Rio de Janeiro-Rj, Brazil. milbarcza@msn.com

Abstract

BACKGROUND: Large amounts of reactive oxygen species are produced in hemodialysis (HD) patients, and, at higher concentrations, reactive oxygen species are thought to be involved in the pathogenesis of cardiovascular disease. It has been proposed that selenium (Se) may exert an antiatherogenic influence by reducing oxidative stress. The richest known food source of Se is the Brazil nut (Bertholletia excelsa, family Lecythidaceae), found in the Amazon region.

OBJECTIVE: The objective of this work was to determine if Se plasma levels in HD patients submitted to a program of supplementation during 3 months with 1 Brazil nut by day could be sustained after 12 months.

METHODS: A total of 21 HD patients (54.2 ± 15.2 years old; average time on dialysis, 82.3 ± 51.6 months; body mass index, 24.4 ± 3.8 kg/m(2)) from the RenalCor Clinic in Rio de Janeiro, Brazil, were followed up 12 months after the supplementation study ended. The Se plasma levels were determined by atomic absorption spectrophotometry with hydride generation.

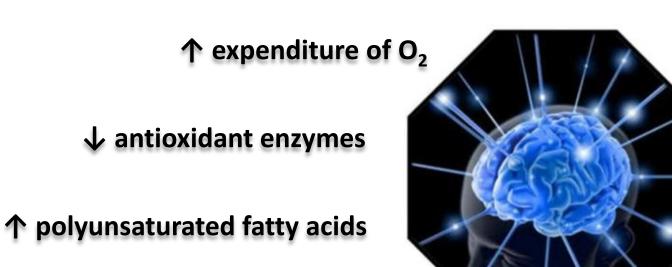
RESULTS: The Se Plasma levels ($\underline{17.3 \pm 19.9 \,\mu\text{g/L}}$) were below the normal range (60 to 120 $\mu\text{g/L}$) before nut supplementation, and after 3 months of supplementation, the levels increased to $\underline{106.8 \pm 50.3 \,\mu\text{g/L}}$ (P < .0001). Twelve months after supplementation, the plasma Se levels decreased to 31.9 \pm 14.8 $\mu\text{g/L}$ (P < .0001).

CONCLUSIONS: The data showed that these patients were Se deficient and that the consumption of Brazil nut was effective to increase the Se parameters of nutritional status. Se levels 12 months after the supplementation period were not as low as presupplementation levels but yet significantly lower, and we needed to motivate patients to adopt different dietary intake patterns.

Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

Brazil Nut (*Bertholletia excelsa*, H.B.K.) Improves Oxidative Stress and Inflammation Biomarkers in Hemodialysis Patients

Milena Barcza Stockler-Pinto • Denise Mafra • Cristiane Moraes • Julie Lobo • Gilson Teles Boaventura • Najla Elias Farage • Wellington Seguins Silva • Silvia Franciscato Cozzolino • Olaf Malm


Table 1 Oxidative markers, inflammation, and lipid profile before and after Brazil nut supplementation

1 castanha/dia (≈290 mcgSe) 3 meses

	Baseline (N=40)	After supplementation (N=40)
Selenium (µg/L)	17.0±11.3	158.1±87.2*
GPx (nmol/mL/min)	33.6±5.1	40.0±8.5*
8-isoprostane (pg/mL)	12.2±4.6	6.6±4.1*
8-OHdG (pg/mL)	53.4 (31.4-66.1)	11.3 (7.8–14.4)*
IL-6 (pg/mL)	64.8±10.6	14.0±1.6*
TNF-α (pg/mL)	21.0±0.3	14.3±8.8*
TC (mg/dL)	149.5±31.5	154.0±63.1
HDL-c (mg/dL)	38.5±15.4	46.6±15.1*
LDL-c (mg/dL)	86.5±28.3	75.2±30.2*
Triacylglycerol (mg/dL)	92.0 (77.0–149.0)	113.0 (77.0–157.0)

^{*}P<0.001

Se vs Brain

Depletion of antioxidants

Neuronal loss

↓ memory and learning

(BOURDEL-MARCHASSON et al. 2001; MARIANI et al., 2005; ZHU et al., 2007; ANSARI e SCHEFF, 2010).

Complex of metals

Introduction

Short Communication

Nutritional status of selenium in Alzheimer's disease patients

Bárbara Rita Cardoso¹*, Thomas Prates Ong¹, Wilson Jacob-Filho², Omar Jaluul², Maria Isabel d'Ávila Freitas³ and Silvia M. Franciscato Cozzolino⁴

University of São Paulo (USP), Avenue Professor Lineu Prestes, 580 - Bloco 14, 05508-900 São Paulo, Brazil

(Received 22 May 2009 - Revised 23 September 2009 - Accepted 13 October 2009 - First published online 1 December 2009)

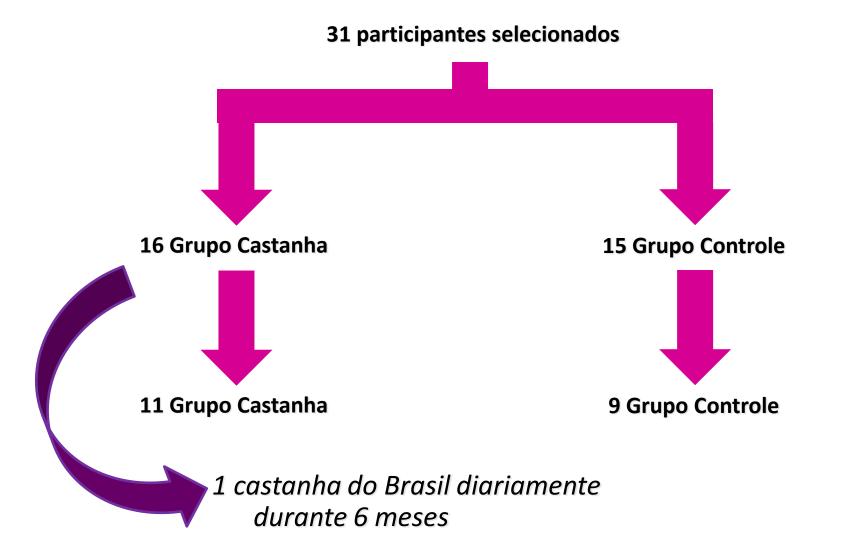
Table 1. Selenium concentrations in plasma ($\mu g/l$), erythrocytes ($\mu g/l$) and nails ($\mu g/g$), and selenium content in diet ($\mu g/d$) of elderly with Alzheimer's disease (AD) and those in the control (C) group

		Groups								
		AD (n 28)				C (n 29)				
	Plasma	Erythrocyte	Nails	Diet	Plasma	Erythrocyte	Nails	Diet		
Recommendation ⁽¹⁸⁾ Mean	.60.00-120.00 32.59	90.00-90.00 43.74	0.30	45 40.99	60·00-120·00 50·99*	90·00-190·00 79·16*	_ 0·40*	45 48·91*		
sp Below normality (%)	21.99 89.3	23-02 96-3	0.14	11·23 61·5	21.07 75.9	46-38 67-9	0-13	15.50 37.0		
Normality (%) Above normality (%)	10·7 0	3-7 0	_	38-5 0	24·1 0	25-0 7-1	_	63.0 0		

^{*}P<0.005.

¹PRONUT (Program of Applied Human Nutrition)-FSP/FCF/FEA, Faculty of Pharmaceutical Sciences,

²Division of Geriatrics, University of São Paulo Medical School (USP), São Paulo, Brazil


³Division of Neurology, University of São Paulo Medical School (USP), São Paulo, Brazil

⁴Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil

Objetivo

Avaliar os efeitos do consumo de castanha-do-brasil sobre o estresse oxidativo, o estado nutricional relativo ao selênio e a função cognitiva de idosos com CCL.

Métodos: Protocolo experimental

Características dos participantes no início do estudo.

Parâmetro	Todos	Grupo Castanha	Grupo Controle	Valor de P para comparação entre os grupos
Idade (anos), média±dp ^a	77,7±5,3	77,7±4,3	77,6±6,6	0,945
Escolaridade (anos), média±dpa	5,4±4,3	5,5±4,0	5,4±4,9	0,996
Gênero, % masculino ^b	30,0	27,3	33,3	1,000
Colesterol total (mg/dL) , média±dp ^a	209,5±37,7	213,3±42,9	204,7±32,3	0,636
HDL-c (mg/dL), média±dp ^a	54,8±9,4	57,6±9,3	51,2±8,9	0,161
LDL-c (mg/dL), média±dp ^a	104,8±29,1	105,1±32,8	104,4±26,1	0,959
VLDL-c (mg/dL), média±dp ^a	23,6±10,0	23,26±8,18	24,4±12,4	0,830
Triglicerídeos (mg/dL), média±dp ^a	118,8±49,8	116,3±40,9	121,9±62,0	0,830

^a: Teste t

^b: Teste exato de Fisher

Resultados

Composição centesimal e de selênio nas castanhas-do-brasil

Nutriente	Média
Energia (kcal)	714,79
Carboidratos (g)	10,89
Proteínas (g)	16,27
Lipídios (g)	67,35
Umidade (%)	2,42
Cinzas (%)	3,07
Selênio (µg/g)	57,75

Resultados

Selênio plasmático e eritrocitário, atividade de GPx, ORAC e MDA dos grupos Castanha e Controle, no início do estudo e após seis meses.

		Grupo C	astanha		Grupo C	ontrole	Valor de P para
Parâmetro	Início	6 meses	Mudança	Início	6 meses	Mudança	comparação
	±dp	±dp	(95% IC)	$\pm dp$	$\pm dp$	(95% IC)	entre os grupos
Selênio plasma ^a	56,2	290,6	234,3	50,0	47,8	-2,2	0,000
(µg/L)	±18,3	$\pm 74,6$	(190,8 – 277,9)	±15,5	±11,7	(-12,8-8,3)	\sim
Selênio eritrócito ²	59,5	574,6	515,00	50,8	33,5	-17,3	0,000
(µg/L)	±20,6	±181,4	(401,02 – 629,0)	±21,0	±16,1	(-27,47,2)	
Atividade de GPxb	40,73	59,55	18,80	44,01	42,54	-1,46	0,006
(U/gHb)	±15,20	$\pm 20,79$	(0,955 - 36,68)	±17,24	±13,05	(-12,84 – 9,91)	
ORAC ²	0,95	1,09	0,15	0,92	1,06	0,14	0,967
(µmol TE/mL)	$\pm 0,45$	±0,26	(-0,21-0,51)	±0,39	$\pm 0,14$	(-0,15 - 0,43)	
MDA ^a	0,42	0,52	0,10	0,50	0,51	0,01	0,343
(µmol/L)	±0,05	±0,12	(0,00-0,19)	±0,06	±0,20	(- 0,19 – 0,21)	

a: Teste t

^b: Teste de Mann-Whitney U

Resultados

Avaliação cognitiva dos grupos Castanha e Controle, no início do estudo e após seis meses.

estado e apos seis meses.								
		Grupo Castai	nha		G	rupo Contro	le	Valor de P para
Parâmetro	Início	6 meses	Mudança	•	6 meses	Mudança	Início	comparação
	±dp	±dp	(95% IC)		±dp	(95% IC)	±dp	entre os grupos
Escore total	59,2±8,1	60,3±10,3	1,1	Г	66,71±8,2	63,57±8,0	-3,1	0,138
CERAD ^a			(-4,0-6,2)				(-5,90,3)	
Fluência	12,8±3,3	14,1±3,9	1,3	Г	16,29±3,7	14,14±3,9	-2,1	0,007
verbalª			(0,6 - 2,6)				(-4,3 – 0,2)	
Nomeação	11,7±2,3	11,9±1,2	0,2		11,2±2,5	11,9±1,7	0,7	0,511
de Boston ^a			(-1,5-1,5)				(-0,3-1,7)	
Praxia	7,7±2,3	9,2±2,2	1,5	Г	8,7±2,6	8,3±2,4	-0,4	0,031
construtiva ^a			(0,0-3,1)				(-1,6-0,7)	
Aprendizado	15,3±3,5	14,2±4,4	-1,1		15,4±3,2	14,9±3,8	-0,6	0,792
da lista de			(-4,6-2,4)				(-3,8-2,6)	
palavras ^a								
Evocação	3,7±2,2	3,6±2,1	-0,1		5,4±1,6	5,1±1,3	-0,3	0,818
livre da lista		J	(-1,2-1,0)			J	(-1,7-1,1)	

SELÊNIO e Cognição

•Cérebro: prioridade na captação e retenção de selênio

•Papel antioxidante: glutationa peroxidase e selenoproteína P

•Destoxificação de radicais livres e xenobióticos

•Seleno P: principal transportador de selênio para os neurônios

Contents lists available at ScienceDirect

Journal of Trace Elements in Medicine and Biology

journal homepage: www.elsevier.de/jtemb

X. ISTERH CONFERENCE

Selenium status in elderly: Relation to cognitive decline

b Division of Geriatrics, University of São Paulo Medical School, Brazil

ARTICLE INFO

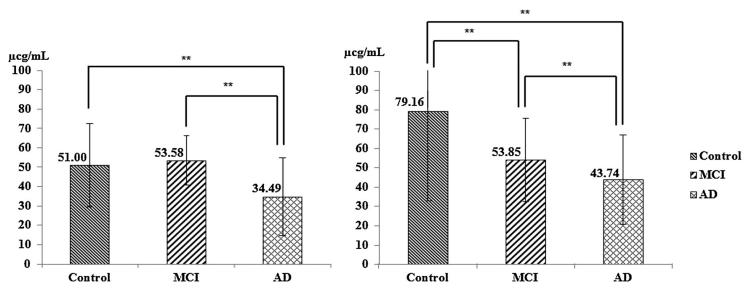
Keywords:
Cognitive decline
Alzheimer's disease
Mild cognitive impairment
Oxidative stress
Selenium

ABSTRACT

Studies show that decreased antioxidant system is related to cognitive decline. Thus we aimed to measure selenium (Se) status in Alzheimer's disease (AD) and mild cognitive impairment (MCI) elderly and compared them with a control group (CG). 27 AD, 17 MCI and 28 control elderly were evaluated. Se concentration was determined in plasma and erythrocyte by using hydride generation atomic absorption spectroscopy. Erythrocyte Se concentration in AD group was lower than CG (43.73 \pm 23.02 μ g/L and 79.15 \pm 46.37 μ g/L; p= 0.001), but not statistically different from MCI group (63.97 \pm 18.26 μ g/L; p= 0.156). AD group exhibited the lowest plasma Se level (34.49 \pm 19.94 μ g/L) when compared to MCI (61.36 \pm 16.08 μ g/L; p= 0.000) and to CG (50.99 \pm 21.06 μ g/L; p= 0.010). It is observed that erythrocyte Se decreases as cognition function does. Since erythrocyte reflects longer-term nutritional status, the data point to the importance of the relation between Se exposure and cognitive function. Our findings suggest that the deficiency of Se may contribute to cognitive decline among aging people.

© 2014 Elsevier GmbH, All rights reserved.

Table 1Intake of energy, macronutrients and Se by participants according to group.


	Groups					
	Control (mean ± SD)	MCI (mean ± SD)	AD (mean ± SD)			
Energy (kcal/d)	1781.43 ± 441.71	1474.42 ± 490.28	1466.02 ± 422.43			
Protein (%)	18.29 ± 3.98	$20.67 \pm 6.43^{\mathrm{a}}$	14.88 ± 2.82^{b}			
Carbohydrates (%)	54.49 ± 7.69	55.07 ± 12.95	61.72 ± 6.30^{b}			
Lipids (%)	27.22 ± 7.79	26.83 ± 7.62	23.41 ± 5.23^{b}			
Se (mcg/d)	48.91 ± 15.5	$34.43 \pm 9.87^{\mathrm{a,b}}$	40.99 ± 11.23 ^b			

^a Different from AD group (p < 0.005).

Journal of Trace Elements in Medicine and Biology 28 (2014) 422–426

^b Different from control group.

Journal of Trace Elements in Medicine and Biology 28 (2014) 422–426

Fig. 1. Se levels in control, MCI and AD groups. (A) Plasma; (B) erythrocyte. **p < 0.001.

Selênio

Conclusões

Importância da realização de estudos que associem essas variáveis

Selênio

<u>Conclusões</u>

Estima-se que de meio a um bilhão de pessoas em todo o mundo possam sofrer de deficiência de selênio

